弹性力学的15个基本方程
在三维情况下,控制线弹性边值问题的基本方程有15个
平衡微分方程 \(\sigma_{i j, i}+F_{b j}=0\) 共3个: \[ \begin{array}{l}{\frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{y x}}{\partial y}+\frac{\partial \tau_{z x}}{\partial z}+F_{b x}=0} \\ {\frac{\partial \tau_{x y}}{\partial x}+\frac{\partial \sigma_{y}}{\partial y}+\frac{\partial \tau_{z y}}{\partial z}+F_{b y}=0} \\ {\frac{\partial \tau_{z}}{\partial x}+\frac{\partial \tau_{y z}}{\partial y}+\frac{\partial \sigma_{z}}{\partial z}+F_{b z}=0}\end{array} \]
几何方程 \(\varepsilon_{i j}=\frac{1}{2}\left(u_{i},_{j}+u_{j},_{i}\right)\) 共6个: \[ \varepsilon_{x}=\frac{\partial u}{\partial x}, \quad \varepsilon_{y}=\frac{\partial v}{\partial y}, \quad \varepsilon_{z}=\frac{\partial w}{\partial z} \]
\[ \gamma_{x y}=\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}, \quad \gamma_{y z}=\frac{\partial w}{\partial y}+\frac{\partial v}{\partial z}, \quad \gamma_{z x}=\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x} \]
本构方程 \(\varepsilon_{i j}=\frac{1}{2 G} \sigma_{i j}-\delta_{i j} \frac{v}{E} \Theta\) 共6个: \[ \begin{aligned} \varepsilon_{x} &=\frac{1}{E}\left[\sigma_{x}-v\left(\sigma_{y}+\sigma_{z}\right)\right]=\frac{1}{E}\left[(1+v) \sigma_{x}-v \Theta\right] \\ \varepsilon_{y} &=\frac{1}{E}\left[\sigma_{y}-v\left(\sigma_{x}+\sigma_{z}\right)\right]=\frac{1}{E}\left[(1+v) \sigma_{y}-v \Theta\right] \\ \varepsilon_{z} &=\frac{1}{E}\left[\sigma_{z}-v\left(\sigma_{x}+\sigma_{y}\right)\right]=\frac{1}{E}\left[(1+v) \sigma_{z}-v \Theta\right] \end{aligned} \]
\[ \begin{aligned} \gamma_{x y} &=\frac{\tau_{x y}}{G} \\ \gamma_{y z} &=\frac{\tau_{y z}}{G} \\ \gamma_{x z} &=\frac{\tau_{x z}}{G} \end{aligned} \]
其中,拉梅系数 \(\lambda=\frac{\mu E}{(1+\mu)(1-2 \mu)}\),剪切模量 \(G=\frac{E}{2(1+\mu)}\),体积应变 \(\theta=\varepsilon_{x}+\varepsilon_{y}+\varepsilon_{z}\),体积应力 \(\theta=\varepsilon_{x}+\varepsilon_{y}+\varepsilon_{z}\),
弹性力学的任务就是在给定的边界条件下,就十五个未知量求解十五个基本方程。求解弹性力学问题时,并不需要同时求解十五个基本未知量,可以做必要的简化。为简化求解的难度,仅选取部分未知量作为基本未知量。