软件: LaTeX 常用符号

日常困惑的 latex 符号集锦

\(\rm{A}\) \(\;\) \(\rm{B}\) \(\;\) \(\Gamma\) \(\;\) \(\Delta\) \(\;\) \(\rm{E}\) \(\;\) \(\rm Z\) \(\;\) \(\rm H\) \(\;\) \(\Theta\) \(\;\) \(\rm I\) \(\;\) \(\rm K\) \(\;\) \(\Lambda\) \(\;\) \(\rm M\) \(\;\) \(\rm N\) \(\;\) \(\Xi\) \(\;\) \(\rm O\) \(\;\) \(\Pi\) \(\;\) \(\rm P\) \(\;\) \(\Sigma\) \(\;\) \(\rm T\) \(\;\) \(\Upsilon\) \(\;\) \(\Phi\) \(\;\) \(\rm X\) \(\;\) \(\Psi\) \(\;\) \(\Omega\)

\(\alpha\) \(\;\) \(\beta\) \(\;\) \(\gamma\) \(\;\) \(\delta\) \(\;\) \(\epsilon\) \(\;\) \(\zeta\) \(\;\) \(\eta\) \(\;\) \(\theta\) \(\;\) \(\iota\) \(\;\) \(\kappa\) \(\;\) \(\lambda\) \(\;\) \(\mu\) \(\;\) \(\nu\) \(\;\) \(\xi\) \(\;\) \(\omicron\) \(\;\) \(\pi\) \(\;\) \(\rho\) \(\;\) \(\sigma\) \(\;\) \(\tau\) \(\;\) \(\upsilon\) \(\;\) \(\phi\) \(\;\) \(\chi\) \(\;\) \(\psi\) \(\;\) \(\omega\)

level 1 希腊字母

序号 大写 小写 英文
1 \(\rm{A}\) \(\alpha\) \(alpha\)
2 \(\rm B\) \(\beta\) \(beta\)
3 \(\Gamma\) \(\gamma\) \(gamma\)
4 \(\Delta\) \(\delta\) \(delta\)
5 \(\rm E\) \(\epsilon\) \(\varepsilon\) \(epsilon\) \(varepsilon\)
6 \(\rm Z\) \(\zeta\) \(zeta\)
7 \(\rm H\) \(\eta\) \(eta\)
8 \(\Theta\) \(\theta\) \(\vartheta\) \(theta\) \(vartheta\)
9 \(\rm I\) \(\iota\) \(iota\)
10 \(\rm K\) \(\kappa\) \(kappa\)
11 \(\Lambda\) \(\lambda\) \(lambda\)
12 \(\rm M\) \(\mu\) \(mu\)
13 \(\rm N\) \(\nu\) \(nu\)
14 \(\Xi\) \(\xi\) \(xi\)
15 \(\rm O\) \(\omicron\) \(omicron\)
16 \(\Pi\) \(\pi\) \(\varPi\) \(pi\) \(varpi\)
17 \(\rm P\) \(\rho\) \(\varrho\) \(rho\) \(varrho\)
18 \(\Sigma\) \(\varSigma\) \(\sigma\) \(\varsigma\) \(varSigma\) \(sigma\) \(varsigma\)
19 \(\rm T\) \(\tau\) \(tau\)
20 \(\Upsilon\) \(\upsilon\) \(upsilon\)
21 \(\Phi\) \(\phi\) \(\varphi\) \(phi\) \(varphi\)
22 \(\rm X\) \(\chi\) \(chi\)
23 \(\Psi\) \(\psi\) \(psi\)
24 \(\Omega\) \(\omega\) \(omega\)

Level 2 英文字母的一些形式

花体

1
2
% 疯掉。。。。到底有什么区别
$\mathfrak X$ $\mathscr{X}$ $\mathcal{X}$

\(\mathfrak X\) \(\mathscr{X}\) \(\mathcal{X}\)

矩阵

矩阵对应元素相乘

https://www.wikiwand.com/en/Hadamard_product_(matrices)

\[ (A \circ B )_{i,j} = (A)_{i,j}(B)_{i,j} \]

\[ \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \circ \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} & a_{12}b_{12} & a_{13}b_{13} \\ a_{21}b_{21} & a_{22}b_{22} & a_{23}b_{23} \\ a_{31}b_{31} & a_{32}b_{32} & a_{33}b_{33} \end{bmatrix} \]